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Summary. Southern hybridization analysis of mitochon-
drial genomes from different lines and cultivars of Vicia
faba, with respect to variability of the coxII gene se-
quence, revealed two predominant types of mitochon-
drial genomes. The type I mitochondrial genome con-
tained the coxII gene sequence in a 6.5-kb BamHI frag-
ment. Type II had two copies of the coxII sequence: the
first in a 6.5-kb and the second in a 2.6-kb BamHI frag-
ment. The second copy was represented by a coxII-orf192
chimeric gene. We found several pure lines with type I
and type IT mitochondrial genomes. Each type of genome
was stably inherited. No chimeric gene was found in
mitochondria of the male-sterile line cms447. Nucleotide
sequences of Vicia faba mitochondrial DNA (mtDNA)
containing normal and chimeric coxII genes are pre-
sented. The sequence of the normal coxII gene was com-
pared to the coxIl gene from mitochondria of Pisum
sativum. The similarity of nucleotide sequences and of
predicted amino acid sequences between these two genes
was more than 98%. A very high similarity between tran-
scription initiation and termination signals was also ob-
served. The sequence of the chimeric gene was character-
ized at the 5" end by the almost complete sequence of the
normal coxII gene, up to the fifth nucleotide before the
termination codon. The 3’ end of the chimeric gene was
represented by the 3’ part of an orf previously called
orf128 +. The full size of this orf was 576 nucleotides,
and the full size of the predicted polypeptide was 192
amino acid residues. Therefore, this orf can be finally
called orf192. Northern hybridization analysis showed
that orf192 was actively transcribed into a 1.4-kb tran-
script. The chimeric gene was also transcribed into a
minor transcript of about 3 kb. Comparative analysis of
the normal coxII gene and orf792 supported the sugges-
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tion that the chimeric gene resulted from nonho-
mologous recombination.
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Introduction

Recombination in mitochondrial genomes of higher
plants causes heterogeneity and divergence of these ge-
netic systems. The extent of recombination processes
varies species-specifically and is dependent on the state of
plant cells: under native conditions plant mitochondrial
genomes are more stable than in callus or suspension
cultures (Leaver et al. 1988; Lonsdale 1989). Chimeric
gene formation can be considered as one of the conse-
quences of rearrangements in higher plant mitochondrial
genomes. In many known cases chimeric genes contained
a part of the coxII gene. Such genes were described, e.g.,
in mitochondrial genomes of Zea mays (Dewey et al.
1985; Levings and Dewey 1988) and Petunia (Young and
Hanson 1987; Hanson et al. 1988; Pruit and Hanson
1989). Participation of the coxII gene in mitochondrial
genome rearrangements was also confirmed by the exis-
tence of coxII gene fragments in the mitochondrial ge-
nome of wheat (Bonen et al. 1984). In order to reveal
possible rearrangements in Vicia faba mitochondrial
genomes involving the cox/I gene, we performed South-
ern hybridization of a 3*P-labelled probe of the Zea mays
coxII gene with mtDNA isolated from different lines and
cultivars of Vicia faba. Many lines and cultivars were
found with only one copy of the cox/T gene in a 6.5-kb
BamHI fragment of their mitochondrial genomes. How-
ever, some lines and cultivars possessed an additional
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2.6-kb BamHI fragment hybridizing with the coxII gene
probe (Negruk and Kaushik 1988). Both fragments were
cloned and mapped.

In this paper, we report the results of a detailed anal-
ysis of normal and chimeric coxII gene copies as regards
their distribution among individual plants of line K,
which contains only the normal coxII gene copy, and line
F, which contains both copies. Additionally, we analyze:
(1) individual plants of cultivar “Dornburger Acker-
bohne,” which is the ancestor of lines K and F; (2) indi-
vidual plants of the cultivar “Black Russians,” represent-
ing a natural isolate cultivated in central Russia; and (3)
individual plants of line cms447. The 2.6-kb BamHI frag-
ment and about 2 kb of the 6.5-kb BamHI fragment with
the normal coxII gene were sequenced. It was found that
the small BamHI fragment contained a chimeric gene
whose 5 end was represented by an almost complete
sequence of the coxII gene. Transcription of coxII,
chimeric, and coxIII genes was also investigated.

Materials and methods

We have used broad bean seeds of cv “Black Russians™ (All-
Union Institute of Selection and Seed Production of Vegetable
Crops, Moscow District, USSR), cv “Dornburger Acker-
bohne,” lines K and F, which differ from the standard karyotype
of Vicia faba by homozygous translocations between chromo-
somes I and VI (K) and IT and HI (F), respectively (Institute for
Genetics and Crop Plant Research, Gatersleben, Germany).
Seeds of line cmsd47 were kindly supplied by Prof. D. Bond.
Preparations of mitochondria and mitochondrial DNA were
made according to Synenki et al. (1978). For Southern hy-
bridization with mtDNA from individual plants, crude mtDNA
preparations were obtained by a simplified procedure without
DNase treatment. Restriction enzyme digestions, electrophore-
sis, labelling of DNA probes, Southern hybridization, construc-
tion of mtDNA libraries, colony hybridization, cloning of re-
striction fragments into pBR329, and DNA sequencing, using
the standard dideoxy chain termination method (Sanger et al.
1977), were carried out according to Maniatis et al. (1982). Prep-
aration of Exolll deletion clones was done according to
Henikoff (1984). mtRNA isolation and Northern hybridization
were performed as described by Schuster and Sisco (1986). The
cloned Zea mays coxII gene and Oenothera coxIII gene se-
quences, kindly supplied by C. S. Levings and A. Brennicke,
were used as probes.

Results and discussion

Intraspecific heterogeneity of the Vicia faba mitochondrial
genome

Among 11 lines of Vicia faba established 30 years ago in
the laboratory of Prof. R. Rieger (Schubert et al. 1982),
two groups differing in the structure of their mitochon-
drial genomes were revealed. In lines of the first group
(A, B, C, G, H, I, K), mitochondrial genomes contained
only one major EcoRI fragment of 1.9 kb hybridizing
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Fig. 1. Autoradiograph of hybridization of **P-labelled coxI
gene probe with mtDNA preparations from individual 6-day-
old etiolated seedlings of Vicia faba cv “Black Russians,” digest-
ed with EcoRI restrictase and electrophoretically separated on a
1% agarose gel. The numbers on the right side of electrophero-
gram f show the fragment sizes in kb
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Fig. 2. Autoradiograph of hybridization of ?*P-labelled coxiT
gene probe with mtDNA preparations from 6-day-old etiolated
seedlings of Vicia faba: a line F, b line K, and ¢ cv “Black
Russians,” digested with EcoRI restrictase and electrophoreti-
cally separated on a 1% agarose gel. The numbers on the right
side of electropherogram ¢ show the fragment sizes in kb

with a 32P-labelled coxII gene probe. In lines of the sec-
ond group (D, E, F, N), mitochondrial genomes pos-
sessed, in addition to the 1.9-kb fragment, a 1.2-kb
EcoRI fragment (Negruk and Kaushik 1988). On the
basis of these differences, the ancestral cultivar “Dorn-
burger Ackerbohne” was expected to represent a mixed
population of plants with the two types of mitochondrial
genomes. Southern hybridization analysis of **P-labelled
coxIT probes with EcoRI digests of mtDNA, isolated
from 20 individual seedlings of the original cultivar,
showed that 15 plants contained a mitochondrial genome
of type I, and 5 plants that of type II. This confirmed our
expectation.

Southern hybridization of *?P-labelled coxII probes
was also performed with EcoRI digests of 48 individuals
of cv “Black Russians.” In this cultivar mitochondrial
genomes proved to be more heterogeneous, although the



majority of plants possessed mitochondrial genomes of
type I or II (Fig. 1a, b). Overexposed autoradiographs
revealed, for both types of mitochondrial genomes, three
additional very weak signals in fragments of 2.5, 2.7, and
2.9 kb. However, for some plants these signals were
stronger and could be seen without overexposition
(Fig. 1¢). Some plants contained mtDNA with a strong
signal at 1.9 kb plus five additional weak signals in 2.9-,
2.7-,2.5-,1.5-, and 1.1-kb EcoRI fragments (Fig. 1d). In
addition, we found two unique plants. The first showed
seven signals: two strong ones in fragments of 1.9 and
2.7 kb, and five weaker ones in fragments of 2.9, 2.5, 1.5,
1.2, and 1.1 kb (Fig. 1¢). The second plant contained a
strong signal at 1.2 kb and three very weak signals in
fragments of 2.9, 2.7, and 2.5 kb (Fig. 1f).

Altogether, among 48 plants analyzed we found 31
with a mitochondrial genome of type I, 12 with a mito-
chondrial genome of type II, 3 with a mitochondrial
genome shown on Fig. 1d, and 1 each with a mitochon-
drial genome shown in Fig. 1e, f. The plants with mito-
chondrial genomes shown in Fig. 1d—f are rare excep-
tions, as confirmed by hybridization of 32P-labelled
coxII gene probes with EcoRI digests of pooled mtDNA,
isolated from several dozen etiolated seedlings of lines F,
K, and from cv. “Black Russians,” respectively (Fig. 2).
Thus, both cultivars “Dornburger Ackerbohne” and
“Black Russians™ were heterogenous for their mitochon-
drial genomes. In both cases, approx. 70% of plants
contained a mitochondrial genome of type I and ca. 25%,
a mitochondrial genome of type II. In order to study the
mode of inheritance of both types of mitochondrial
genomes, the distribution of 1.9- and 1.2-kb EcoRI frag-
ments, among progenies of lines K and F and among
individual F, hybrid plants obtained by reciprocal
crosses between lines K and F, was analyzed. The hybrid
nature of progenies of crosses was ascertained by analysis
of individual karyotypes. Southern hybridization experi-
ments showed that all 22 plants of line F and all 12 plants
of line K analyzed contained mitochondrial genomes of
type II and type I, respectively. A total of 13 hybrid
seedlings with line K as a cytoplasm donor contained a
mitochondrial genome of type I, and 19 hybrid seedlings
with line F as a cytoplasm donor contained a mitochon-
drial genome of type II. Thus, both types of mitochon-
drial genomes were stably inherited. This led to the con-
clusion that the 1.2-kb EcoR1 fragment is the result of an
irreversible recombination.

Sequence of the Vicia faba coxII gene and comparison with
the Pisum sativum coxIl sequence

pBR329 DNA-cloned 6.5-, and 2.6-kb BamHI fragments
of Vicia faba mtDNA, including two different copies of
the coxIl gene, were obtained and mapped (Zeinalov
et al. 1990). Nucleotide sequences of the complete 2.6-kb
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BamHI fragment and of about 2 kb of the larger BamHI
fragment containing the coxII gene were determined. It
was found that the 6.5-kb BamHI fragment possessed a
normal coxII gene very similar to the Pisum sativum
coxII gene (Moon et al. 1985) (Fig. 3). No introns were
present in either gene. The predicted translation product
from the Vicia faba coxII gene was one amino acid
residue longer than that of Pisum sativum. It contained
an additional threonine residue coded by ACG in posi-
tion 1732—1734 (Fig. 3). The same additional codon was
found at corresponding positions in coxII genes of rice
and Zea mays (Moon et al. 1985). Thus, the full length of
the predicted polypeptide was 259 amino acid residues.
The similarity of predicted amino acid sequences between
broad beans and pea was more than 98%. In addition to
the insertion of an ACG codon in position 1732-1734,
we found seven single nucleotide substitutions in the cod-
ing part of the gene. Three of these, at positions 1311,
1443, and 1659, did not cause substitutions of amino acid
residues (Fig. 3). In the other four cases substitutions of
nucleotides caused substitutions of amino acid residues.
The total similarity of nucleotides between Vicia faba
and Pisum sativum coxII genes was also more than 98%.

Nucleotide sequences upstream and downstream
from the coxII coding region were also very similar be-
tween Vicia faba and Pisum sativum. Among 630 nucle-
otides upstream from the initiation codon, only eight
nucleotide substitutions occurred, and among 203 nucle-
otides downstream from the termination codon, eight
nucleotide substitutions were found between the two
genes (Fig. 3). Moon et al. (1985) determined positions of
transcription initiation and termination sites in P. sa-
tivum coxIl gene. These sites were perfectly identical to
corresponding regions of the V. faba coxII gene (Fig. 3).
For this reason we suggest that V. faba coxII transcripts
are initiated and terminated at the same sites.

Within the V. faba gene sequence, three pairs of short
direct repeates were detected (Fig. 3). Two of them, each
11 nucleotides long, were localized several hundred nu-
cleotides upstream from the coding region. Of the third
pair of direct repeats, each 10 nucleotides long, the first
repeat occupies position 681—-690, and the second posi-
tion 1232-1241 (within the coding region).

Common upstream and downstream sequences

There are also some other interesting sites upstream and
downstream from the coding region of the V. fuba coxII
gene. A possible hairpin structure was observed at posi-
tion 674-710, not far from the possible transcription
initiation site (Fig. 3, 4a). The same structure was found
in the coxII gene of P. sativum. When we compared se-
quences located upstream from initiation codons of the
V. faba coxII gene and the mt-plasmid 2 (Wahleithner
and Wolstenholme 1987), which corresponds to the mini-
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circular plasmid CCC1A (Negruk et al. 1985), we found
a perfect decanucleotide sequence homology, starting
from the tenth nucleotide upstream from initiation
codons of the coxII gene and the orf of mt-plasmid 2
(Fig. 5a). Additionally, we found regions of high se-
quence homology immediately upstream from these ho-
mologous sequences (Fig. 5b). These regions were ar-
ranged in opposite orientation.

After analysis of the P. sativum coxII gene sequence
near transcription termination sites, a possible hairpin
structure was found at position 967—-988 (Moon et al.
1985) (Fig. 4b). In V. faba it corresponded to position
2001 -2022. As seen from Figs. 3 and 4b, several nucle-
otides more were needed to overlap the corresponding
P. sativum hairpin structure completely. Nevertheless,
this structure of the V. faba coxII gene must be similar to
that of P. sativum, since neighbouring parts of these two
genes were perfectly homologous in sequence.

The coxII-orf192 chimeric gene

The complete sequence analysis of the 2.6-kb BamHI
fragment showed that 1,038 nucleotides upstream from

a T b
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A1 46
A1 A ¢
AT 6 1
¢ ¢ ¢ 1
-4 6-C
A-1 61
-1 1-4
C-6 -6
T-A (965) 2001 T-f=
671 14 4 2022(986)
FAN S -6
° TTIGETTGA  CCTGAATCC 5° CCTCATCTIC  GCCCACCACT

Fig. 4a and b. Possible hairpin structures of the broad bean se-
quence near the predicted transcription initiation site (position
676—708) (a), and of the pea sequence near transcription termi-
nation (position 967-988) (b)

a b
1 Q‘Z 9
ACCAAAGCAMTG coxll

ACCAMGCCTATG mt2
A~ A
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the initiation codon were perfectly homologous to the
corresponding region of the normal coxII gene (Fig.6).
Furthermore, the coding region of the coxII gene copy of
the 2.6-kb BamHI fragment, excluding the last five nucle-
otides before the termination codon, was also similar to
that of the normal coxII gene. However, downstream
from position 1810 we found a different sequence. There-
fore, the coxlII region was not terminated at the position
of the normal coxII gene. Instead, we observed continu-
ation of an open reading frame that was terminated by a
TAG codon 306 nucleotides downstream from position
1810 (Fig. 6). Analyzing the open reading frame, we pre-
dict a chimeric polypeptide consisting of 359 amino acid
residues.

The next question was: what is the origin of the 3’ end
of the chimeric gene? To answer this question, we hy-
bridized a 3?P-labelled, cloned 3’ end sequence of the
chimeric gene from nucleotides 1916 to 2538 (Fig. 6;
clone 563) and the 2.6-kb BamHI fragment with BamHI
digests of V. faba mtDNA. We found that clone 563 hy-
bridized not only with the 2.6-kb BamHI fragment, but
also with a 7.8-kb BamHI fragment (Fig. 7). Additional
experiments demonstrated that the 7.8-kb fragment also
contained a coxIII gene. Physical mapping of the 7.8-kb
BamHI fragment showed the sequence in the chimeric
gene 3’ end to be located near the coxIIT gene sequence
(Fig. 8).

Comparative computer analysis of the 2.6-kb BamHI
fragment sequence revealed that the 3' end of the
chimeric gene sequence downstream from the junction
point overlapped with the orf128+ sequence located
downstream from the coxIII gene (Macfarlane et al.
1990). This allowed us to reconstruct the total orf, which
was previously called orf728+. Figure 9 shows the re-
constructed sequence starting from position 1500 of the
2023-bp fragment, sequenced by MacFarlane etal.
(1990), and terminating at the end of the chimeric gene.
The length of the overlapping region was 113 nucle-
otides. The only difference that we found in this region
was C at position 1925 in our variant, and A at the same
position in the variant described by Macfarlane et al.
(1990). It caused the substitution of the amino acid
residue asparagine for histidine. The length of the pre-

GTATCOGAAACCACC‘!ACGATAAAC--AACCACGCTACAACAA‘ECAA—GAG--—-TTGCTC ------- GGGGAGGACCTATAACTI—

............

TGATTGGTAAACCCAACCAGCGATTTACAAC&AACAAGIICTTTCCTCTTGHGGGGGG&GC&GHMMAAIGAACCAAAGCAAATG

coxil
—_—

Fig. 5a and b. Homologies between sequences present upstream of the Vicia faba coxII gene and of the short orfin V. faba mt-plasmid
2 (Wahleithner and Wolstenholm 1987). Direction of transcription is indicated by horizontal arrows. A dash indicates a nucleotide that
is absent. Short homologous sequences (a) are inserted into corresponding long homologous sequences (b) in opposite orientation
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dicted polypeptide which could be translated from the
new orf was 192 amino acid residues (molecular weight:
19,506). Therefore, we called this new open reading
frame orf192.

Using the method of Eisenberg et al. (1984) we have
characterized positions and sequence of transmembrane
helices of the predicted orf192 polypeptide. We found
two such helices in positions 6—28 and 41—71 amino acid
residues.

Comparative analysis of sequences of the V. faba nor-
mal coxII gene and orf192 did not reveal any sequence
homology in regions that could participate in recombina-
tion. Thus, it is possible that the coxII-orf192 chimeric
gene arose as a result of nonhomologous recombination.

Transcription of the coxIl-orf192 chimeric gene

The similarity of the 5 end regulatory regions between
normal and chimeric genes, and the occurrence of plants
containing only the chimeric gene in their mitochondrial
genomes (Fig. 1£), suggest that the chimeric gene might
be transcribed. To verify this, Northern hybridization
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Fig. 7. Autoradiograph of hybridization of 3?P-labelled gene
probes: a — coxIII; b — orf192 (563 clone); ¢ — chimeric coxII-
orf192, with mtDNA preparations from 6-day-old etiolated
seedlings, digested with BamHI restrictase and electrophoreti-
cally separated on a 1% agarose gel. The numbers on the right
side of the electropherogram ¢ show the fragment sizes in kb
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analysis of *?P-labelled coxII gene probes with mtRNA
isolated from seedlings of Vicia faba cv ““Black Russians”
was performed. We found a main signalin a 1.2-kb RNA
band and two minor signals in 1.1- and 3-kb RNA bands
(Fig. 10a). When we used a probe of a fragment of
orf192, the distribution of signals was different. In this
case, three major signals were found in 1.4-, 1.6-, and
3.-kb RNA bands, and two minor signals at 0.8 and
2.5kb (Fig. 10b). It is difficult to interpret these data
since, as mentioned before, cv “Black Russians” repre-
sents a heterogenous population containing only 25% of
plants with the type II mitochondrial genome. Therefore,
we hybridized 3?P-labelled probes of the coxII gene, the
orf192 (clone 563), and the coxIIl gene with mtRNA
isolated from seedlings of lines F (with the chimeric gene)
and K (without the chimeric gene). In these experiments,
the coxII gene probe gave the main signal in the 1.2-kb
RNA band of both lines (Fig. 10c, d). mtRNA from
these two lines differed in a minor signal found at 3-kb
only in line F (Fig. 10c). The 32P-labelled clone 563
(orf192) gave one main signal in the 1.4-kb RNA band of
both lines (Fig. 10e, f). However, mtRNA from line F
contained two additional signals in the 1.6-, and 3-kb
RNA bands (Fig. 10¢).

Profiles of coxIIT gene transcripts in lines F and K
were similar. For both lines, a major signal was found at
1.2kb and a minor one at 2.8 kb (Fig. 10g, h). coxIIl
gene probes were used because it was found by Macfar-
lane et al. (1990) and in our laboratory that orf792 was
located near the 3’ end of the cox/IT gene. Therefore, we
wanted to know whether or not chimeric gene formation
interferes with transcription of the cox/II gene. Since this
was not the case, we concluded that the chimeric gene
was weakly transcribed into a transcript of about 3 kb.
The origin of the signal in the 1.6-kb RNA band is not
clear.

Mitochondria of line cms447 do not contain a coxIl-orf192
chimeric gene

It has been reported that chimeric genes may be causally
linked to male-sterile phenotypes and that very often

PEA
Fig. 8. Restriction maps of the 2.1-kb HindIII-
VICIA FABA EcoRI fragment of P. sativum mtDNA that con-
8.5kb tains the coxII gene, the 6.5-kb BamHI fragment of
V. faba mtDNA containing the normal coxIT gene,
the 2.6-kb BamHI fragment of V. faba mtDNA
VICIA FABA that contains the chimeric coxII-orf192 gene, and
2.6k5 the 7.8-kb fragment of V. fauba containing coxiIl
and orf192 genes. The restriction endonucleases
VICIA FABA are indicated as: H-HindIIl, B-BamH]I, E-EcoRI,
7.8 kb X-Xbal, P-Pstl, S-Smal. Direction of transcription

is indicated by arrows
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GGTATATGAAGGAACCAAACAGTGGATTTAGGGATGAAAGCTCGAATACAAAGATAACCGGGCTTTTCCA
AABAATTACTGCAGCTTTCCCAGCTTCGTTATCCTTTGAATTACTCCTAATTYTTCTATTCCTAGTGTCA

M R K N F L ¥ $ F L L L ¥ 6 vV S Y L L C L
TGAGAAATAAAAACTTTCTATACTCATTCCTTCTCTTAGTCEGGTGTCTCCTATTTACTTTGTCTCATCTT

G E 8 E ¥ F W A L L 8 K V 6 Y S5 @6
GGG TGABGAGTGAAGTTTTTTEGEGCCTTGCTCTCAAAGGTGGGATACTCCEGTACGACGCGAGCCATATTT

1 P F L KL T 6 ¢ S$ 6 R L A L V L F F A V K A
ATACCATTTCTCAAATTGACAGGTTECTCCGBAAGGCTGGCTCTTGTTCTETTTTTCGCCGTGAAAGCGG

v N 6 T L F K D F F s ¢C M EE A G P S

TGAATGGAACCCTCTTCAAAGATTTTTTCTCTTGTATGGAAGAAGCTGGGCCGTCTTCGEGCGCATCAAG

S H P 6 NP V VP P I D@ ¢ L H 6 E V K @ D E
CTCTCACCCGGGTAATCCCETTGTACCCCCTATTCGATCAAGGTCTACACGGCCGAAGT TAAACAAGATGAA

Eco RI
vV B 6 v W T H L R E F 6 E F T 1 P T
GTTTGEGGGETGTGBACACACTIGCGCGAATTCGEGGAATTTACCATCCCTACTCCAAAAGAAAGCACGG

vV L @ P AV L E T P WD G6 VR S @ 6 6 FP P P R R
TTCTACAGCCGGCGETGCTEGGAAACGCCCCGEGACGEGETCCETTCACAAGGGEGGCCACCCCCCAGGCG

R P N K P P P P L W K 6 P @ K W
CCGCCCCAACAAACCTCCCCCTCCCTTGTGGAAGGGEGCCGCAAAAGTGECEACCGATGAGGCGGCCECEG
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GTGCGCCCAAGCCTETAGCEAGGGGTTGATCCAGCGGGCGGCCCATTGTCCCGATCGTTTCTGGGAGTET
GTGGCGGGCTCATGCTGTCTCTTCTGTTCGTAACTGGTTTATTAACTCAAGGTAGGGCTGGCAGACCTAT
GTTTTGACACCCTCCGAGAGGAGATTAAAAAACAAATAGAGGGGTTGCTCCAAATATATTTTCATAATGC
TCTTGTTCTTCCCCCTGGAAGATAATTCAAGACATTGCAACCCACCTTCATCACGATTCCGAGTCTTTGEG
AGGAACTCTTGACCATTTTGGAAGAATCTTACTGAATTAGGTCTACAAAGTCAAAGAGTTTCAACAAATT
CTCCTCTTTCTCTCGCAGTGAAGTCCCGATGGCAAACTATATATAACATTTGAATTTCTCTTACATTCCA

Bam HI
CGTTTCCGAAACGGATCC 2633
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206D
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2200 Fig. 9. Nucleotide sequence of orf192 con-
structed by comparison between the 2,023-

2270 bp fragment of V. faba mtDNA that con-
tains the coxIII gene (Macfarlane et al.

2340 1990), and the 2,538-bp fragment of V. fa-

2410 ba mtDNA that contains the coxIl-orf192
chimeric gene. The direction of transcrip-

2480 tion is indicated by a horizontal arrow.

ss50 Overlapping sequences of the;e two frag-
ments are underlined. The predicted amino

2620

acid sequence is shown. The nucleotide se-
quence is started from nucleotide 1501 of
the 2,023-bp fragment

that the mitochondrial genome of line cms447 did not

contain the chimeric coxII-orf192 gene.
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a b c d e £ g h
Fig. 10. Northern hybridization of *2P-labelled DNA probes
with mtRNA isolated from Vicia faba: cv “Black Russians” (a,
b); line F (¢, e, g); line K (d, £, k). The **P-labelled gene probes:
coxIl (a, c, dy; orf192 (b, e, f}; coxIII (g, ). The numbers on the
right sides of electropherograms & and % show the fragment sizes
in kb

these chimeric genes contain a portion of the coxII gene
(Dewey et al. 1985; Young and Hanson 1987; Levings
and Dewey 1988; Hanson et al. 1988; Pruit and Hanson
1989). In this context, we asked the question: is the cox/I-
orf192 chimeric gene present in the mitochondrial ge-
nome of Vicia faba cms cytoplasm? To answer this, 3*P-
labelled coxII probes were hybridized with EcoRI digests
of mtDNA from seedlings of line cms447. It was found
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